

PFAS Investigation at a Rural Naval Airfield

Presented By
Angela Jones, PE
Naval Facilities Engineering Command (NAVFAC)
MIDLANT

Objective

- Present Case Study of a Rural Naval Airfield
 - Present site history
 - Review Conceptual site model
 - Overview of treatments installed to address PFAS
- General Conclusions and Take Aways
 - Science
 - RPM
- Questions

Background

- Outlying landing field
- Staffed by 40 military personnel
- Two groundwater supply wells provide water (potable and non-potable) on-base
- Former drinking water treatment involves green sand filters, permanganate oxidation, water softening, and chlorination
- Wastewater treatment through a series of settling lagoons and used for spray irrigation on-site
- Surrounding residents use private wells for potable and non-potable purposes

Initial PFAS Investigation

Initial On-Base Findings – Groundwater

- Exceedances in Surficial Aquifer monitoring wells:
 - Crash Truck Test Area
 - PFOS 11,000 ng/L
 - PFOA 320 ng/L
 - Fire-fighting Training Area
 - PFOS 3,000 ng/L
 - PFOA 320 ng/L
 - Exceedances in facility boundary wells and wells in irrigation spray field
- Yorktown Aquifer Monitoring Wells detections but no exceedances
- On-base water supply (raw water and finished drinking water) samples exceeded LHAs and personnel immediately provided bottled water
- CONCURRENTLY CONDUCTED EXPEDITED INVESTIGATION ON BASE WHILE PLANNING OFF-BASE CONTIGENCY

Lifetime Health Advisory (LHA) for PFOA + PFOS = 70 ng/L

Implementation of Contingency Plan

- Conceptual Site Model (CSM) developed to assess need to test offsite drinking water
- Contingency Off-base drinking water sampling
- Installation of monitoring wells on- and off-base
- Soil and sludge sampling

Rapid Response Actions Off-base Drinking Water

- Water filling station established by local municipality for concerned residents during offbase groundwater sampling
- Residences with exceedances of the PHA and subsequently the L-HA (PFOA + PFOS > 70 ng/L) were immediately supplied with bottled water when results were received (6 properties)

Current CSM

Distribution of Detected PFAS Concentrations

Primary and Secondary Source Evaluation (Preliminary Fate and Transport)

Soil sampling

- Fire-fighter training areas
- Near the supply wells where fire-fighting water has been sprayed
- Irrigation sprayfields

Sludge evaluation

Wastewater storage lagoon

Sludge Test Results

- Highest PFAS concentrations found within sludge of storage lagoon
- Liner replaced ~1
 year prior to
 collection of
 sludge sample
- PFOS dominates, with lower levels of PFOA observed

Water and Wastewater Treatment Approach

- GAC selected to treat potable water and wastewater
- Treatability for Drinking Water
 - Multiple GACs isotherm tested with Rapid Small Scale Column Testing
 - Finished drinking water,
 breakthrough >16,000 bed volumes
- Treatability for Wastewater
 - Alum and ferric sulfate pretreatment, 50 mg/L alum selected
 - Alum pretreatment reduced concentrations of PFOA (22%) and PFOS (56%)
 - Breakthrough for wastewater considerably sooner than drinking water due to TOC

Évaluation of Drinking Water and Wastewater Systems

Drinking water system

- Used Total Oxidizable Precursor (TOP) assay to assess precursor mass
- •TOP assay PFOA values higher than non-TOP assay PFOA in raw water
- •TOP assay PFOA was greater after permanganate/green sand filter treatment, indicating oxidative transformation of precursors
- PFOS levels remained fairly consistent throughout treatment system

Wastewater system

- PFOS levels remained fairly consistent throughout treatment system
- PFOA levels declined slightly through treatment process and TOP assay suggested some precursor mass remains throughout

Treatment System Retrofits

- Drinking water system
 - Designed GAC systems on- and off-base using Filtrasorb 600
- Wastewater system
 - Sacrificial GAC prior to Filtrasorb
 400 treatment

SCIENCE General Conclusions and Take-aways

- Numerous PFAS releases identified
- PFAS has significant migration in groundwater
- Significant redistribution has occurred
- Straight drilling wells through confining unit and pumping has contaminated the deeper aquifer
- PFOS is the dominant compound detected in all media
- Filtrasorb bituminous GAC effective for drinking water treatment
- Imminent threat in has been removed

RPM Take-aways

- Create an aggressive plan of action and consistent key messages prior to taking the first sample
 - Work with PAO and NMCPHC risk communicators to develop site-specific Q&As
- Be as open and transparent with the surrounding community as possible
 - oPARTNER and utilize available resources such as ATSDR, EPA, state environmental departments, and local public health departments via risk communication sessions and participation in public meetings
 - **OEducate partners and community on CERCLA process**
- Utilize your legal counsel and LANT resources (they can be extremely helpful)
- Prepare yourself for the long haul; this entire process can quickly become overwhelming and cause emotional stress

Knowledge Check

 What PFAS currently have USEPA lifetime health advisory for drinking water?

Answer: PFOA and PFOS (cumulative 70 ppt)

 How many emerging contaminants are listed on the USEPA "Emerging Contaminants and Federal Facility Contaminants of Concern" webpage?

Answer: 13 (1,2,3-TCP, 1,4-dioxane, 2,4,6-TNT, DNT, RDX, nanomaterials, NDMA, perchlorate, PFOS/PFOS, PBBs, PBDEs, and tungsten.

https://www.epa.gov/fedfac/emerging-contaminants-and-federal-facility-contaminants-concern

Contacts and Questions

Points of Contact

NAVFAC LIST FEC: Angela Jones

Angela.jones1@navy.mil

Questions?